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NON-LINEAR VISCOELASTIC BEHAVIOR OF POLYETHYLENE

J. M. LIFSHITZ· and H. KOLSKY
Brown University, Providence, R.I.

Abstract-The response of viscoelastic solids to quasi-static loading, under conditions where non-linear theories
have to be used, are discussed. Creep measurements of tension and of torsion in polyethylene specimens are des­
cribed. Step loading was used and the deformations were measured optically by means of travelling microscopes
for the tension experiments and by the reflection of light beams from mirrors for the torsion experiments. The
deformations were too large for the theory of linear viscoelasticity to hold and the constitutive relations used were
of multiple integral form; some of the kernels involved have been determined. It was found that for the loading
range used, two kernels were sufficient to describe pure shear deformations and three kernels were required for
tension. Some experiments in which two loading steps were applied are also described and discussed.

INTRODUCTION

THE mathematical description of linear viscoelastic behavior has received considerable
attention in recent years (e.g. Leaderman [1], Gross [2], Ferry [3]). The underlying assump­
tion in these treatments is that linear superposition obtains. Thus ifin the one-dimensional
case, the strain response of the material to a step loading is known as a function of time,
i.e. the creep function is known, the response of the material to any loading history can be
expressed as a convolution integral in which the kernel is this creep function. This is one
form of Boltzmann's Superposition Principle; alternative forms involve kernels corres­
ponding to a step function in strain or a delta function in either stress or strain.

Another approach is to consider the response of the material to a stress which varies
sinusoidally with time. For a linear viscoelastic solid the strain will then also vary sin­
usoidally with time at the same frequency but will lag behind by a phase angle, which in
general varies with the frequency of the oscillation. If the ratio of the stress amplitude to
the strain amplitude, and this phase angle are known for all relevant frequencies, the res­
ponse to any stress history can be expressed as a Fourier integral.

Thus in linear viscoelasticity there is a wide choice of formulations and as shown by
Gross [2] these are all mathematically equivalent so that experimental measurements of
one quantity (e.g. the creep function) can be transformed numerically to give values of any
of the other viscoelastic functions.

Now most viscoelastic solids are linear for sufficiently small strains, and the problem
we are concerned with in this paper is how to extend the theory to describe the non-lineari­
ties which occur for larger strains. Experimental measurements for one viscoelastic solid
namely polyethylene are described and discussed in this connection.
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It should be noted that for polymers such as polyethylene the transition from linearity
to non-linearity is quite smooth, or to state the situation more realistically the description
"linear" and "non-linear" are to a large extent arbitrary. There are always deviations from
linearity and the "non-linear" region might be defined as that region where the deviations
from linearity can no longer be overlooked and this is necessarily a somewhat subjective
judgment. The smallest non-linearity which is considered significant will depend on the
one hand on how accurately and reproducibly measurements can be made, and on the
other on the use to which the theory is being put, namely whether it is being used simply
to predict the strains produced by given stresses or to lead to a better understanding of
the mechanical response of the material with a view to establishing relations between its
mechanical behavior and its microscopic structure.

In the present investigation what was required was an extension of linear theory to
describe the stress-strain behavior of viscoelastic solids at strains where the deviations
from linear viscoelastic behavior are not too large, i.e. where the non-linear terms could
be regarded as corrections to the linear terms. There are a number of alternative mathemat­
ical descriptions which will fulfill this requirement, e.g. the use of non-linear differential
equations of the form Pa = Qe where P and Q are non-linear differential operators with
respect to time and a and £ are the stress and strain respectively.

The method employed in this paper was to use a multiple "integral" representation of
the stress-strain behavior. This type of representation has been discussed by Green, Rivlin
and Spencer [4-6J and has been used successfully by Ward and Onat [71, Hadley and Ward
[8 J, and Onaran and Findley [9] to describe the non-linear mechanical response of polymers.

Ward and Onat [7] studied the behavior of oriented polypropylene monofilament in
tension, and showed that the response could be represented with reasonable accuracy by
the sum of a linear and a third order hereditary functional. Onaran and Findley [9] studied
the response of polyvinyl chloride polymer and showed that a multiple integral functional
relationship could be used to describe the results when first, second and third order stress
terms were employed.

More recent work by Hadley and Ward [8] on several polypropylene fibers of different
molecular structures has shown that with increasing stress levels and increasing time,
more than two functionals are required to describe the observed creep and recovery phe­
nomena of these materials.

Lockett [1 OJ has considered how the material functions for general triaxial loading can
be determined experimentally for a material whose response can be adequately expressed
by a constitutive equation involving multiple integrals of the first, second and third orders.
Thus, in a one-dimensional test in which single step loadings are applied the values of the
kernels can be found along the axis of symmetry of their arguments Ii.e. J(t). K(t. t) and
L(t, t, t)]. These values differentiate between the "linear" and "non-linear" contributions
to the deformation and (for the range of stresses and times covered) enable the strain
produced by an applied step load to be determined.

The determination of the kernels for arguments which are not all equal corresponds to
the study of the interaction between step loads applied at different times. An exact deter­
mination of such interactions involves very accurate and very laborious measurements,
and the present investigation did not provide reliable quantitative determination of such
kernels. A number of semi-qualitative results of the nature of such interactions were,
however, obtained and these help us to obtain a better understanding of the nature of the
non-linear response of polyethylene.
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THEORETICAL
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Let Xi be the coordinates ofa generic particle ofa body in a fixed rectangular coordinate
system at zero time and let xkr) be the coordinates at some later time T. A simple material
is then defined as one for which the stress at that particle at time t depends upon the dis­
placement gradients Fij = axJaxj at all times up to and including the time t. The form of
the dependence of the stress upon the history of the deformation gradients is subject to two
types of restrictions. First a simultaneous time-dependent rotation of the body and the
reference system may be assumed not to change the stress components, and second if
the body in its undeformed state possesses any symmetry properties, these will also restrict
the form ofthe constitutive relations. In particular if the material in its initial state is isotro­
pic this will impose severe restrictions on the form the stress-strain relation can take. The
nature of these restrictions has been discussed by Green, Rivlin and Spencer [4-6]. Frechet
(11] has shown that continuous non-linear functionals may be expressed to any desired
degree of accuracy as a series of multiple integrals. Spencer and Rivlin [12] have found that
for an initially isotropic material the number of these integrals may be reduced to five.

These constitutive relations give the stress for known histories of the deformation
gradients and are appropriate for the analysis of stress-relaxation experiments, i.e. experi­
ments where after some time t the deformation is kept constant and the changes in the stress
components measured. The experiments carried out in the present investigation were
concerned with creep measurements where the stress is maintained constant and the strains
are measured. To analyse such tests an inverted set of constitutive relations where the
deformation is expressed in terms of the stress history is required. Unfortunately there is
no method of inverting these relations and we must instead start from the basic assumption
that the strains at any time t can be expressed as a function of the values of the stress at
all times up to and including the time t. The difficulty, however, then arises that this stress
functional also involves the displacement gradients, since in a fixed coordinate system the
stress will change as a result ofthe rotation ofthe body.

We will not attempt to deal with this general problem here. Instead, if we confine
ourselves to small rotations we may attempt to describe the non-linear behavior of the
material by the use of stress-strain relations in a form similar to that used by Green and
Rivlin with the strains expressed as the sum of a number of hereditary integrals describing
the stress history. The material is assumed to behave in a linearly viscoelastic manner for
small deformations so that the first integral will be the Boltzmann type used in the classical
theory of linear viscoelasticity.

This follows the procedure used by Ward and Onat [7] and Onaran and Findley [9]
and if we confine ourselves to only three multiple integrals the stress-strain relation as
given by Lockett [10Jmay be written in matrix form as

(1)
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R denotes the rigid body rotation part of the displacement gradients, RT is the transpose
of R and the !/J's are functions of t - r~ in the following way: !/J 1 and !/Jz are functions of
t-r l ; !/J3, ... ,!/J6 are functions of t-r l and t-rz; !/J7' .... !/J12 are functions of t-r l.
t - r z and t - r 3' These are the functions that characterize the mechanical behavior of the
material. In order to determine these functions a large number of different tests would
have to be carried out; these are given in tabulated form by Lockett.

It may be worth mentioning here that the reason for using three multiple integrals
rather than two is because of the assumed initial isotropy; for isotropic materials the
response to a shearing force is symmetrical, i.e. a shear stress in the positive x direction will
produce a shear deformation which is equal in magnitude and opposite in sign to a shear
deformation produced by a similar shear stress in the negative x direction. This means that
there can be no even terms in the stress-strain relations, and the multiple integrals of even
order must vanish. Thus a constitutive relation involving only the first and second integrals
cannot describe non-linear behavior in shear, and a third integral must be included.

TENSION TESTS

We consider here a one-dimensional deformation in the x direction where only the x
coordinate is involved. R is then the unit matrix so that P is reduced to a which has only
one non-zero component, (J II' If we now denote (J II by (J and the E II component of the
E matrix by E, equation (1) may be written as

E(t) = f~ J(t-r)d'(r)dr+ f)~K(t-r l , t-rz)d'(rl)qrz)dr l drz

(2)

where J, K and L characterize the mechanical properties of the material. If we define the
strain as

au
t = ax'

then from the definition of E we get

u=x-X

(3)

TORSION TESTS

Consider a thin walled hollow circular cylinder whose axis is in the x I direction in a
fixed rectangular Cartesian coordinate system. As a result of a torque T, that is applied
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to the cylinder, every particle in it moves in the X 2X 3 plane and the motion depends only
on the coordinate Xl' Now R here is not the unit matrix, since this type of deformation
involves a rigid body rotation.

If we denote the angle of shear by y then for deformations where y < 0·10 we ignore
higher order terms, and we then find that

y
0

2

R= Y 0 (4)-
2

0 0

If we denote the shear stress 0" 12 by r then the stress matrix P, measured in a coordinate
system which rotates with the rigid body motion, is given (after neglecting y2 next to 1) by

(

ry

P= ~

r

-ry

o
(5)

By substitution of Pin (1) and neglecting y2 next to 1, we obtain the shear component of
the strain £12 = yj2.

EXPERIMENTAL

The principle of the experimental method in creep tests is to apply a constant stress
and measure the resulting deformation as a function of time. There are three types of
measuring techniques; these may be classified as mechanical, electrical, and optical and
all three methods have been used extensively in creep measurements. With soft materials,
such as plastics, there are two important sources of error; these are (a) mechanical interac­
tion between the measuring device and the specimen and (b) slip between the ends of the
specimen and the grips in the loading apparatus. Both these errors can most easily be
avoided by the use of an optical method for measuring the deformations. Thus observations
can be made without any mechanical contact with the specimen and the effects of slip in
the specimen holders can be avoided by observing the separation between two points in
the specimen, remote from the holder.

In the tension tests, cylindrical specimens of solid cross-section were employed and the
position oftwo points 2·5 in. apart were observed with two travelling microscopes. Displace­
ments as small as 2 x 10- 4 in. could be detected reliably by these means.

In the torsion tests (Fig. 1) the specimens were in the form of thin-walled hollow circular
cylinders so that the torsional stress was effectively uniform across the specimen. The
preparation of these specimens was considerably more difficult than those used in the
tension experiments, since uniform wall thickness and smooth surface finish was required.
The bottom of the specimen was here held fixed and an axial torque was applied to the
top of the specimen by a system of pulleys and weights. Two small mirrors which were
cemented to thin pins were attached to two points on the specimen, A and B. The line AB
was vertical and a t in. in length. A beam of light, the cross section of which was a long
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FIG. 1. Tension-torsion test apparatus.

narrow rectangle, was reflected by the mirrors onto a scale, so that two line images were
produced. The scale was in the shape ofa circle with a radius of 180jn in., with the specimen
at its center so that each inch on the scale corresponded to one degree of rotation. Thus the
angle ofrotation of the cross-section-A with respect to the cross-section-B could be obtained
directly. The light beam was obtained by letting the light from a concentrated arc lamp
(Sylvania C25jDC) fall on the slit formed by the edges of two razor blades. During the
first two minutes after application of the load the motion of the two cross sections was
recorded photographically, after which visual observations were made.

The torsion machine was designed to enable combined tension-torsion tests to be
carried out. All the moving parts had to have very low frictional losses and special bearings
were obtained for this purpose. Both in the tension and the torsion tests it was necessary
for the load to be released uniformly. In the tension machine this was done by a hydraulic
jack and in the torsion machine it was done manually.

Since the interpretation of the results required comparison of a number of tests it was
important to be able to carry out experiments on identical specimens and be sure that at
the beginning of the test the material was in the same unstrained condition. It was found
that the polyethylene specimens did not return to their original shape after large deforma­
tions, at least not within a reasonable time, and a number of different methods of annealing
were therefore tried Annealing in air resulted in the specimens becoming brittle and colored,
presumably due to oxidation, and a nitrogen atmosphere was therefore used. It was found
that annealing for 12 hr at a temperature of 100°C was sufficient to br; . the material back
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to its initial state. The effectiveness of the annealing was tested by whether or not reproduc­
ible results could be obtained in the stress-strain measurements. Each specimen was an­
nealed a number of times at different stages of its machining and then again after each test.

The first step in the investigation was to carry out simple creep tests under constant
loads, so that

O"(t) = ciH(t)

where H denotes the Heaviside function

(6)

t < 0

t~O

The strain response in tension given by (2) is thus reduced to

E(t; i) = c/(t)+ cf K(t, t) + Cf L(t, t, t)

and in torsion it is

Edt; i) = ciM(t) +Cf N(t, t, t)

Equation (7) can be written in a formal way as

(7)

(8)

(j = 1,2,3) (9)

Yi = E(t; i) aij = (cY

ZI = J(t), Z2 = K(t, t), Z3 = L(t, t, t)

In order to determine the three unknown Zj' we have to carry out three experiments with
three different loads, thus in (9) i also has the range 1,2,3. The solution of (9) is

(10)

where ajl1 is an element in the inverse matrix of aij'

If sufficiently accurate experimental data from creep experiments are available the
kernels ZI' Z2' and Z3 can be calculated from equation (10).

It was found that the unsmoothed creep measurements gave reliable values for ZI

but that the scatter in the values of Z2 was large and the values of Z3 were even less reliable.
In order to obtain meaningful results it was clearly necessary to "smooth" the experimental
data. Instead of doing this, it was decided to approximate the observed results with an
analytical curve which fell within the experimental scatter. Values of Yi could then be
computed to any degree of accuracy from the analytical expression and used to solve
equation (9). The sole justification for this numerical procedure was that it yielded kernels
which described the experimental results well, and this will be discussed in the next section
of this paper. An analytical curve which was found to fit the experimental observations
was of the form

where
log f = a +b log t (11)

f = e-h/e2
• (12)

(h is a disposable parameter which is chosen to make the log-log plot off against t as close
to a straight line as possible.) To obtain the values of e from corresponding values of f we
must solve the cubic equation (12) and take the appropriate root.
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The calculations for the torsion tests were the same as for the tension tests. The only
difference is that for torsion we need only two creep curves in order to determine the two
kernels, whereas in tension we need three creep curves for the three kernels.

Experiments involving two-step loading were then carried out, the accuracy of the
tests was not sufficiently high for reliable quantitative results to be obtained. Some qualita­
tive conclusions could however be obtained and these are discussed in the next section.

RESULTS

The measurements of creep in both tension and torsion of polyethylene were fitted to
equations of the form of (11) and (12). The values of the strain at different times were then
determined from the analytic curves and inserted in equation (7) to give the form of the
kernels J(t), K(t, t) and L(t, t, t) for the tensile response of this material; equation (8) was
used to find the kernels M(t) and N(t, t, t) for the response in torsion. The resulting curves
are shown in Fig. 2.

1·2

1·0 -

0·8

0·6

0·4

0·2 -

-- TENSION

---- TORSION

----

10
OL---------"----------"---------....
0'1

FIG. 2. The kernels for tension and torsion tests.

It may be seen that the values of all five functions increase in magnitude with increasing
time and that the second kernel K(t, t) is negative in sign over the whole time range. Figures 3
and 4 show a comparison between the experimental results in tension and the values calcula­
ted from the kernels given in Fig. 2. Figures 6 and 7 show a similar comparison for the
torsion tests.

In each case only the results for the lowest and highest load used in the experiments
are shown in the figures, the results were obtained for a number of intermediate loads and
these showed a gradual transition between the two extremes given here.

In Fig. 3 it may be seen that for a tensile load of 2541b/in2 the viscoelastic behavior is
almost linear and can be adequately described by the first kernel J, the contribution of K
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FIG. 4. Comparison between experimental and calculated strain (tension) (uo = 760·9Ibjin2
).

and L are small and cancel each other out. Similarly, Fig. 6 shows that for a torsion load
of 1271b/in2 the material is behaving in an essentially linear viscoelastic manner and the
contribution of the N kernel is very small.

Figure 4 shows the experimental results in creep for an initial load of 760-9Ib/in 2.

Here the non-linearity is very pronounced and the deviation between the linear visco­
elastic contribution, given by the J kernel, and the observed results may be seen to increase
with increasing time. The calculated curve with all three kernels gives excellent agreement
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with the experimental results except for the very highest strains (> 6 percent) where small
deviations occur. These may be due to the fact that the load was kept constant so that the
stress increased with decreasing cross-sectional area of the specimen. This effect. which
becomes increasingly important as the strain increases. was not allowed for in the caJcula­
tions. It may be seen from Fig. 4 that although the third integral (L kernel) contributes
much more to the calculated strain than second integral (K kernel) all three are required to
predict the observed strain accurately. Attempts to describe the behavior purely in terms
of the J and L kernels were found to give unsatisfactory agreement with the observed
behavior. These results are in contrast with those found for oriented polyisopropylene by

O(tl
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FIG. 5. Deviation from linearity in tension tests.
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FIG. 6. Comparison between experimental and calculated strains (torsion) (fo == 126·81b/in 2 1.
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Ward and Onat 171 who were able to obtain satisfactory agreement with only two integrals
(J and L).

Comparing Figs. 6 and 7 which give the torsional results we see that at the lower load
To = 126·8 lb/in 2 the nonlinearity is negligible whereas for the highest load To = 527·1 Ib/in 2

the contribution of the third integral, N, is quite large and its relative effect increases with
increasing time.

It should perhaps be emphasized here that while the first kernels, J for tension and M for
torsion. have been determined completely, the second kernel K has only been determined
on the bisector of its arguments and the third kernels. L for tension and N for torsion. have
only been found along the trisectors of their arguments.
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FIG. 7. Comparison between experimental and calculated strains (torsion) (To = 527·llb/in2 ).
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L 2, 3,4, 5

In order to illustrate the effect of increasing non-linearity with the time of application
of the load, the creep results have been plotted in a different form in Figs. 5 and 8.

For a linear viscoelastic solid subjected to step loads O"(l), 0"(2), ... ,O"(i) etc. at time t = O.
the strains E(t; I), E(t; 2) ... , E(t; i) ... at any time t will be proportional to the loads, i.e.
E(t; i)/O"{i) is constant. If we now define a function

a(t; i) = E(t; i)O"( l):
E(t ; I )O"(i)

This will be unity for all t and all values of i when the material is linearly viscoelastic. The
non-linearity will be shown by deviation of this quantity from unity.

Figure 5 shows the function a(t) plotted as a function of time for four different tensile
loads, a load of 253'6Ib/in2 has been used to obtain the reference values 0"( I) and E(t; I).
Figure 8 shows a similar set of curves obtained from the torsion tests. It may be seen from
Fig. 5 that the non-linearity for tensile loads increases rapidly not only with increasing
load but also for anyone load with increasing time. This effect is not so marked in torsion
tests where the slopes of the curves actually decrease slightly with increasing time of
application of the load.

The difference between the stress fields in the tension and torsion tests lies in the presence
of hydrostatic components in the former which are absent in the latter. The finite value of
the K kernel in tension as well as the large differences in non-linear behavior between the
two types of test must result from the presence of these hydrostatic components in tension,
and presumably ultimately occur because of the density changes produced by these com­
ponents.

The results of some two-step loading experiments are shown in Fig. 9. In the fir'lt set of
experiments a constant tensile load 0"0 was applied and a second load 0" I was added at
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FIG. 9. The effect of prestraining the material on subsequent creep (0', = 260·61b/in1 ).
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time t I' A few tests were first carried out with fixed values of (10 and (11 and only the time
t I was varied. Some further tests were then carried out in which the value of (10 was changed.
In Fig. 9 two sets of observations are shown. In curves A, B, and C the value of (10

is 353'5Ib/in2 in D, E, F, and G (10 = 507·2Ib/in2
• In all cases (11 = 260·5Ib/in2

• In all
the figures the strain 8 - 80 is plotted against time, 80 being the value the strain would have
had at time t if the additional load had not been added.

It may be seen from Fig. 9 that with increasing time of preloading, i.e. with increasing t I'
the material becomes "stiffer" for additional loads, in other words the larger the prestrain­
ing the less the creep produced by a given additional load. Further by comparing, for
example, curves Band G which had the same strain 80 at the instant that the additional
load (11 was added, we see that the response for B is much smaller than that for G. Thus when
we reach the same strain with a small load applied for a long time, the material is stiffer
to additional loads than if the same strain is reached with a larger load for a shorter time.

This increased stiffening is presumably associated with the orientation of the long
chain molecules along the direction of stretch, (the "cold-drawing" of polyethylene is
an extreme example of this where an extremely stiff fiber is produced). The results given
here indicate that the effectiveness of such orientation is not purely a question of the
macroscopic strain produced but depends on the manner in which this was reached; it
becomes more effective as the length of the loading time is increased.

In Fig. 10 the responses of a specimen to two double-step loads are compared. In both
programs the final load was 767·5Ib/in2

• For the experiment shown in curve A a load of

E%

A - 507·2 + 260·5 (lb/in 2 )

B - 353·5 + 414·0 (lb/1n2 )
10

8

6

4

o o'----------5-o------1o-0--~-L.-~-15~O-----'- t (min.)

FIG. 10. The response to two double-step loading programs.

507·2Ib/in 2 was applied and one minute later when the strain was 2·15 percent, a second
load of 260'Slb/in2 was added. In the second experiment, curve B, a load of 353'Slb/in2

was applied and one hour later when the strain was again about 2 percent, the second
load of 414·0 Ib/in 2 was added. It may be seen that the strains would appear to be approach­
ing the same limit but that a one hour delay is maintained between the two curves as creep
progresses.
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CONCLUSIONS

The results of creep experiments in tension and torsion have been described and the
experimental curves have been interpreted in terms of multiple integrals. The determination
of the kernels from these experimental results inevitably involves a certain amount of
curve-fitting and it may perhaps be held that this is all that such treatments can achieve. If
this were so it could still be argued that a knowledge of these kernels summarizes in a very
convenient form, the creep response of the material over a wide range of stresses and times.
The authors, however, feel that a knowledge of the shape of these kernel functions throws
considerable light on the way in which the material departs from linear viscoelastic behavior
as the deformations become larger. Thus for example the very different nature of the non­
linearity in shear and simple extension is clearly seen from the analysis of the experimental
results.

The experiments on two-step loading have also produced some interesting results on
how the nature of the mechanical response changes with degree of preloading which is the
essence of its non-linear response.

Clearly considerably more experimental work is required in this field before a better
understanding of the complete non-linear response can be expected.
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Resnme--La reaction des solides viscoelastiques ades charges quasi-statiques, sous des conditions oil des theories
non-lineaires ont ete employees. est discutee. Des mesures de fluage de tension et de tension sur des specimen de
polyethylene sont decrites. Des chargements a etapes sont employes et les deformations mesurees optiquement
au moyen de microscopes pour les experiences de tension et par la reflection de rayons de lumiere sur des mirroirs
pour les experiences de torsion. Les deformations sont trop grandes pour que la tMorie de viscoelasticite lineaire
puisse se maintenir et les relations constitutives employees sont de forme multiple et integrale; quelques un des
noyaux e1eves ont ete determines. II a ete constate que pour la gamme de chargements employes deux noyaux
etaient suffisants pour decrire les deformations de cisaillement pur et trois noyaux etaient requis pour la tension.
Quelques experiences dans lesquelles deux etapes de chargement etaient appliquees sont egalement decrites et
discutees.
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Zusammenfassung-Es wird beschrieben wie viskoelastische Flussigkeiten auf quasi-statische Belastung reagieren,
wenn die herrschenden Bedingungen so sind, dass nichtlineare Theorien angewandt werden mussen, Kriech­
messungen der Spannung und Verdrehung von Polyathylenmustern werden beschrieben, Belastung war stufen­
weise und die Verformung wurde optisch gemessen, Spannung mittels beweglichen Mikroskopes und Verdrehung
mittels Spiegeln und reflektierter Lichtstrahlen. Die Verformungen waren fUr die Theorie der linearen Visko­
elastizitat zu gross und die Materialbeziehungen waren in der Form von Vielfachintegralen; manche Kerne
wurden bestimmt Es wurde festgestellet, dass im gegebenen Belastungs-Bereich, zwei Kerne geniigen, urn
Scherungs-Verformungen zu beschreiben, und drei Kerne fUr die Spannungs-Verformung, Weitere Experimente
in denen zwei Belasungsstufen angewandt wurden werden auch beschrieben,

A6cTpaKT-PaccMaTpHBaeTcli OTBeTHali peaKIUlli B1I3KO-3J1aCTH'IHbIX TaepAblx TeJI Ha KBa3H-CTaTH'IecKylO
Harpy3Ky rrpH YCJlOBHlIX, rAe AOJIlKHbl ObITb yrroTpe6JIeHbI HeJlHHeHHble TeopHH. OrrHCblBalOTCli nOJI3y'lHe
H3MepeHHlI HanplilKeHHlI H Kpy'leHHlI B nOJlH3THJleHOBblX 06pa311ax. ITpHMeHlIJIaCb cTyneH'IaTali 3arpY3Ka
H AecPopMallHH H3MepllJlHCb OnTH'IeCKH nocpeAcTBOM nepeABHralOlllHxcli MHKpocKorroB AJIli onblTOB C
HanplilKeHHeM H oTpalKeHHeM CBeTOBbIX JIyqeH OT 3epKaJI AJIli 3KcnepHMeHTOB C Kpy'leHHeM. ,[(ecPopMallHH
6blJIH CJlHIllKOM BeJlHKH AJIli YAeplKaHHlI TeopHH JlHHeHHOH B1I3KO-3J1aCTH'IHOCTH H 6bIJIH npHMeHeHbl
KOHcTHTyTHBHble OTHOIlleHHlI cPOPMbl KpaTHoro HHTerpaJIa; onpeAeJleHbl HeKoTopble BOBJle'leHHble lIApa.
bbIJIO HaHAeHO, 'ITO AJllI Harpy30K npHMeHlIeMoro AHana30Ha AJllI onHcaHHlI AecPopMallHH '1HCTOrO CABHra
AOCTaTO'lHO AByX lIAep H AJllI onHcaHHlI HanplilKeHHlI Tpe6yeTcli TpH lIApa. OnHcaHbl H paCCMOTpeHbl
TaKlKe HeKOTopble OnblTbl, B KOTOpbIX npHMeHlIJlHCb ABe cTyneHH Harpy3KH.


